
EXPERIENCE IN TURBOMACHINERY DESIGN

Cosimo Casotto
Ccasotto3@gatech.edu
+1 (510) 980-1940

Personal website: cosimoLikesRockets

LinkedIn: cosimo-casotto

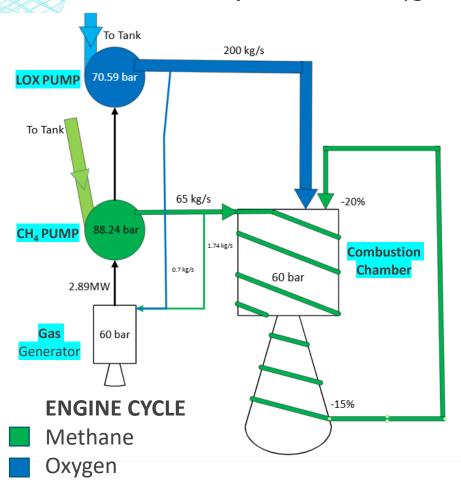
ROCKET ENGINE DESIGN PROJECT

Methane/Oxygen open gas generator cycle liquid rocket engine

I found a YouTube tutorial on the use of **TURBOdesign1** last semester and I thought it would be fun to do a project with it. By the time I had access to the software I had been assigned a project for my rocket propulsion class. The **goal of the project** was to design the engine of a **single-stage-to-orbit (SSTO) rocket**. I used TURBOdesign1 to design the **powerpack** of the engine. If you are interested, please check out my full project report on my website.

Rocket Propulsion / coding Projects | cosimoLikesRockets

ROCKET ENGINE PARAMETER SUMMARY


Inputs	Value	
Design Thrust	1MN	
Pcc	60 bar	
m_dot (oxygen)	200 kg/s	
m_dot (Methane)	65 kg/s	
Design altitude	0 m (sl)	
Number of Engines	1 Engine	
Turn Start	130 km	
Turn end	162.9 km	

Outputs	Value	
Final Altitude	162.9 km	
Initial Mass	2909.03 kg	
Nozzle Expansion ratio	30.5	
Throat Radius	16 cm	
Tcc	3522.98 K	
Isp	384.67 s	

ENGINE CYCLE AND POWERPACK

I calculated the **pump parameters** using equations seen in class.

I used those calculations to plug the numbers into the TURBOdesign1 software to obtain performance plots and **blade profiles** of the oxygen and methane pumps.

Work

	Oxygen Pump	Methane Pump
Head H [m]	599.11	2049.2
Flow Rate Q [m ³ /s]	0.17	0.15
Rotational Speed N [rpm]	6148.16	16470.16
Impeller Diameter D [m]	0.31	0.21
Specific Speed S_s	4.48	6.39
Power Input [MW]	1.37	1.52

PUMP CALCULATIONS

used these equations to estimate the pump parameters

1.

2.

Pump Head

Volumetric flow rate

 $U_{
m energy} = \sqrt{rac{g\,H}{\psi}}$ Tip velocity based on the Euler head relation for centrifugal pumps

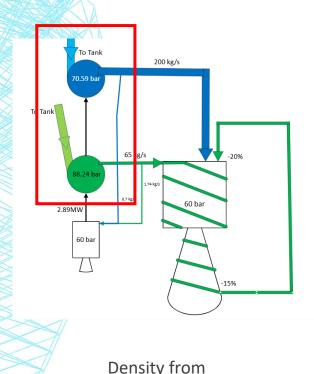
4. $N=N_s \frac{(H\,g)^{0.75}}{O^{0.5}}$ Rotational speed from specific speed

5. $D = d_s \, \frac{Q^{0.5}}{(H\,a)^{0.25}}$ Impeller diameter from specific diameter

6.
$$U_{\text{geom}} = \frac{D}{2} N$$

Recalculate tip speed, based on the impeller diameter

7. $\Psi_{\mathrm{new}} = \frac{H\,g}{U_{\mathrm{geom}}^2}$ Recalculate loading Accept if coefficient based on within 5% of geometric tip speed original value original value


8. $P_{\text{hyd}} = \frac{\dot{m} \Delta P}{n \, o}$

Get pump hydraulic power

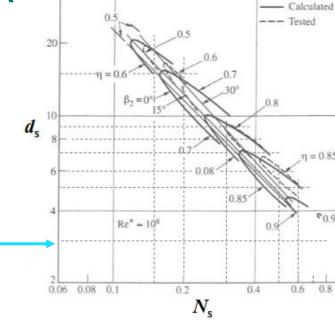
9. NPSH =
$$\frac{P_{\rm in} - P_{\rm vap}}{\rho g}$$

Cavitation check

10.
$$S_s = \frac{N Q^{0.5}}{(\text{NPSH } g)^{0.75}}$$

PUMP HYDRAULIC POWER

The **hydraulic power** of each of the two pumps is calculated as:


$$P_{hyd} = f(\dots)$$

From **Balje/Stepanoff**

similarity charts

 $\Psi = 0.59$ (between

0.4 and 0.7 for LREs)

 $f(\rho, \dot{m}, \Delta P, \psi, N_s, d_s, \eta, g, P_{in}, P_{vap})$

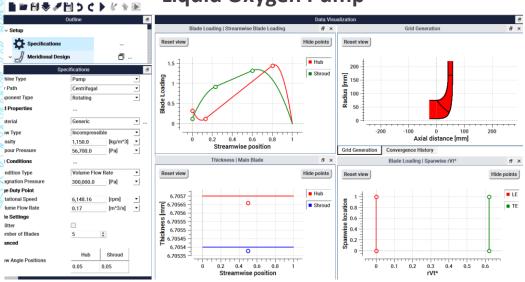
Mass flow chosen for engine performance parameters

thermodynamic state

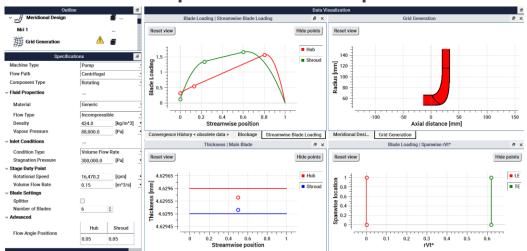
 $\Delta P(CH_4) = Pcc / (0.85 * 0.8)$ assuming 20% loss on the injector and 15% loss in the cooling channels

 $\Delta P(LOX) = Pcc / 0.85$ assuming 20% loss on the injector

→ 3 bar (assumed tank pressure)


Vapor pressure

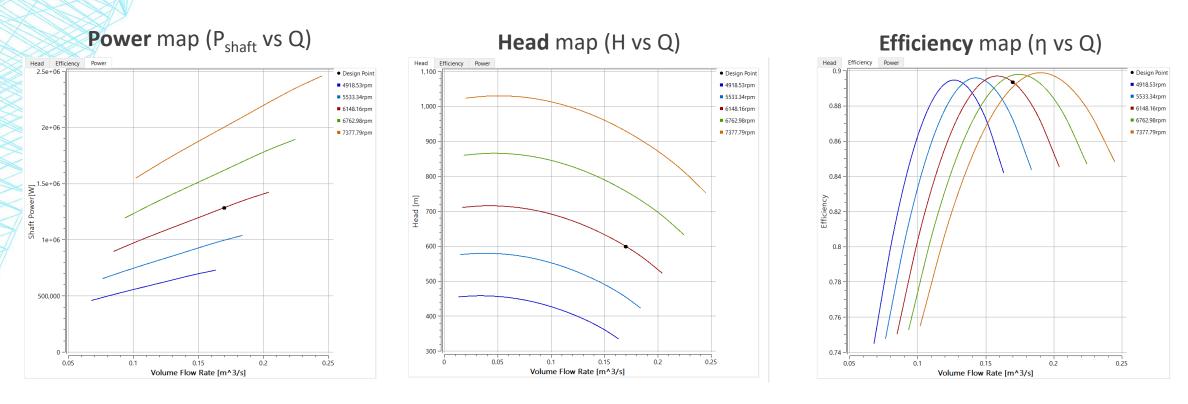
 \rightarrow η = 0.86 arbitrarily chosen


$$W_{total} = P_{hyd}(LOX) + P_{hyd}(CH_4)$$

PUMP PLOTS

Liquid Oxygen Pump

Liquid Methane Pump



Used **TURBOdesign1** to create the following plots:

- Top Left: Streamwise Position vs Blade Loading. In both cases the hub is aft-loaded. There is a risk of separation. The loading on the shroud looks acceptable.
- 2. Top right: Meridional design.
- 3. Bottom left: Streamwise position vs **thickness**. I chose a constant thickness blade design.
- 4. Bottom right: **Swirl** (rV_{θ}) vs spanwise location. These plots look good, with 0 swirl at the inlet and a **constant swirl** at the trailing edge.

RESULTING PUMP PARAMETERS

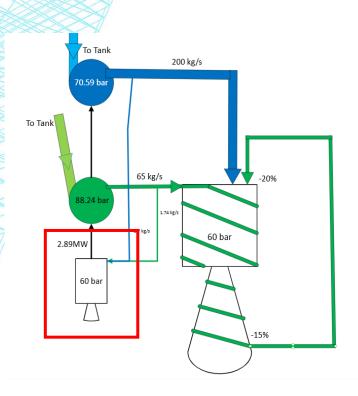
TURBOdesign1 also generated these performance maps, which highlight the operating point of my oxygen pump.

We can see that the oxygen pump is operating near the **Best Efficiency Point**. Slightly decreasing the volumetric flow rate would increase the efficiency and pump head while also decreasing the necessary shaft power. However, we are already operating at a **higher efficiency** than the conservatively estimated efficiency ($\eta = 0.86$) for the preliminary calculations.

PUMP CAD

TURBOdesign1 has the option of outputting a **CAD file** of the pump **blade** as well as the **volute**. I imported these into Fusion360 and added the shroud and hub.

Note: This is only for the purpose of 3D printing the engine, the design of the **hub and shroud** is **not detailed**. Also, in the current version, both pumps are placed on the same shaft. Since they rotate at different speeds this is not an ideal design. Separating the shafts and using a gear system would improve the design.


LOX Pump

CH₄ Pump

TURBINE CALCULATIONS

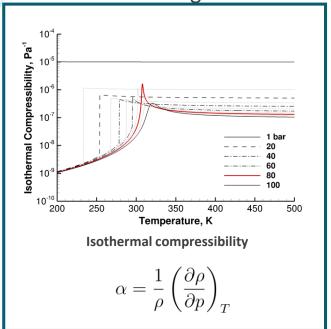
A very **rich mixture**, with an **equivalence ratio of 10**, goes into the preburner. This is done to keep **the temperature of the combustion gases** acceptable for the turbine blades. The **Python Cantera** library is used to calculate the **combustion gas** properties.

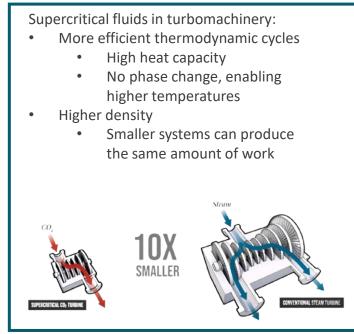
$$\frac{T_{\rm out}}{T_{\rm in}} = \left(\frac{P_{exit}}{P_{cc}}\right)^{\frac{\gamma-1}{\gamma}}$$
 Combustion Gases Ambient

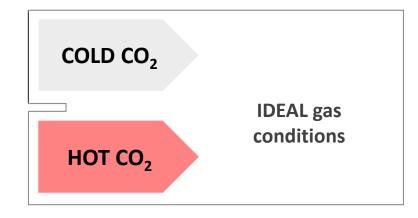
Combustion Gases
$$w_t = \eta_t \, c_p \, \left(T_{\rm in} - T_{\rm out} \right) = \eta_t \, c_p \, T_{\rm in} \left[1 - \left(\frac{P_{exit}}{P_{cc}} \right)^{\frac{\gamma - 1}{\gamma}} \right]$$
 efficiency = 0.7

Total power necessary to run the pumps

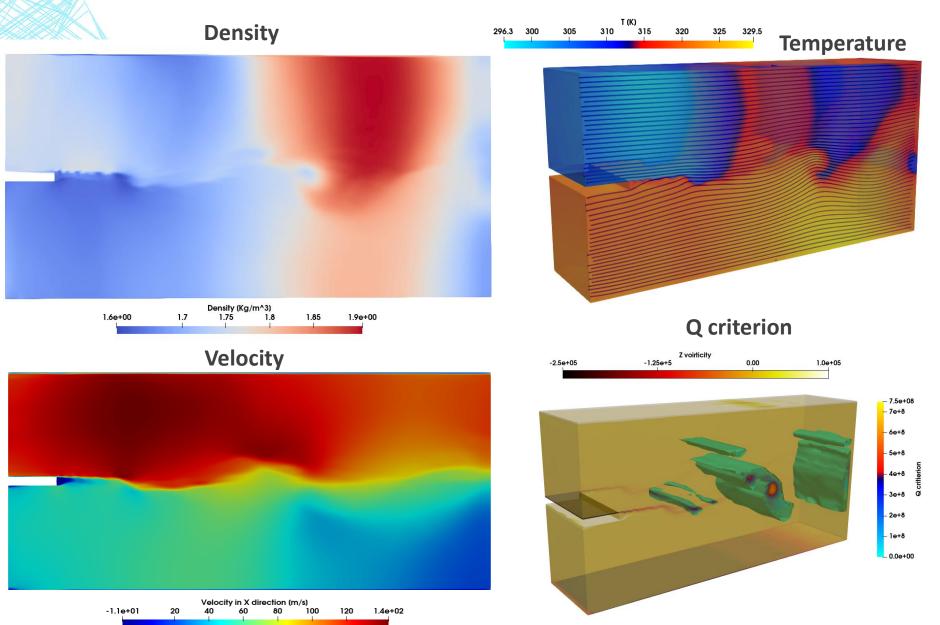
Mass flow through the turbine
$$\dot{m}_t = \frac{W_{\rm total}^{\uparrow}}{w_t} = \frac{W_{\rm total}}{\eta_t \, c_p \, T_{\rm in} \left[1 - \left(\frac{P_{exit}}{P_{cc}}\right)^{\frac{\gamma-1}{\gamma}}\right]}$$


ABOUT MYSELF


- Graduating in December with a master's in Aerospace Engineering from Georgia Tech
- **CFD researcher** at Georgia Tech in Dr. Oefelein's High Performance Computing Lab
- Experience in CFD (Georgia Tech & NASA)
- Experience in production engineering (Rocket Factory Augsburg)
- Experience in test engineering (Technology for Propulsion and Innovation)

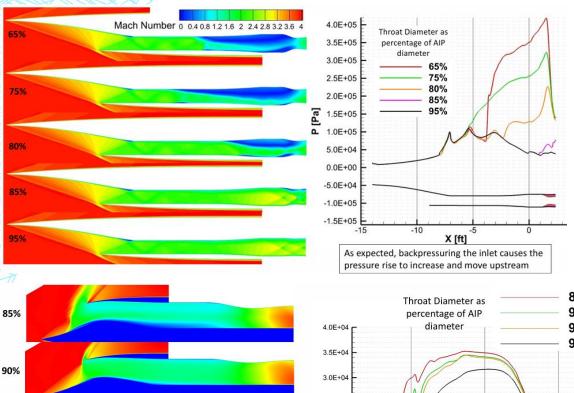

RESEARCH AT GEORGIA TECH

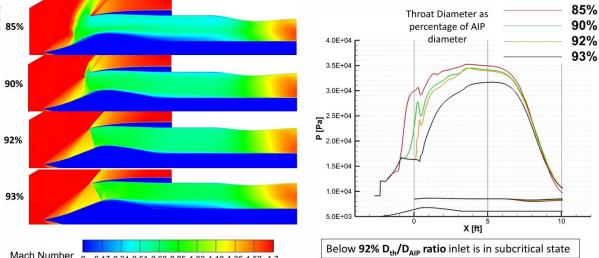
- My research centers around the compressibility effects in supercritical mixing layers
- In the vicinity of critical pressure and temperature, supercritical fluids exhibit **strong non-linearities** in their properties (ex: Isothermal compressibility plot in the bottom right of the slide.)
- The goal of my work is to identify and quantify the key differences between ideal and supercritical mixing, as well as in single-species and multi-species supercritical mixing

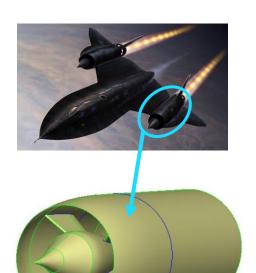


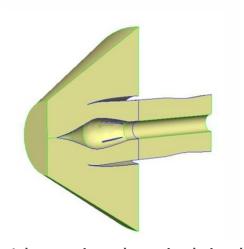
Setup of CFD simulations for 2 different datasets

SOME CONTOUR PLOTS




Two streams
(upper/lower) mix
downstream of the
mixing plate.


Observations on the
mixing behavior of
the 2 flows can be
made.


CFD INTERNSHIP AT NASA

Wall pressure rise from increase in backpressure

Inlet negative-volume simulation domain

- Worked in the Inlets and Nozzles
 branch in the Propulsion Division
 at the NASA Glenn Research
 Center.
- Focused on creating and validating a workflow to speed up the design and analysis of supersonic jet engine inlets.
- Validated workflow for mixedcompression, Pitot, and streamline-traced inlets
- Demonstrated the effects of backpressuring the inlet by restricting the nozzle throat diameter.